Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

<u>Alon Vardi</u>, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo

Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, U.S.A *ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain

Dec. 5, 2017

Sponsors: DTRA (HDTRA 1-14-1-0057) NSF E3S STC (grant #0939514) Lam Research Korea Institute of Science and Technology

FinFETs

Intel Si Trigate MOSFETs

14 nm Process

FinFETs used in state-of-the-art Si CMOS

Tri gate

- improved short-channel effects
- smaller footprint

Double gate

• but... higher parasitics

Si and InGaAs FinFETs

normalized by gate periphery

Si and InGaAs FinFETs

normalized by gate periphery

normalized by fin footprint

- Si planar \rightarrow FinFET: performance \downarrow , performance per footprint \uparrow
- Key challenge for FinFETs \rightarrow efficient transport on sidewalls

- g_m(III-V FinFETs) < g_m(Si)
- Target of W_f=5 nm yet to be demonstrated

Si and InGaAs FinFETs

- III-V FinFET: $W_f < 20 \text{ nm} \rightarrow g_m \downarrow$
- Challenge: Improve III-V sidewall conductivity

7

MIT InGaAs FinFET's Gen. #2 vs. #1

Gen. #1: Vardi et al., VLSI 2016, EDL 2016

Mo SiO₂ L_f Mo/W L_g InGaAs channel InAlAs Dry+DE recess

Gen. #2: This work

Gen #1:

- Wet cap recess
- 3 Digital etch cycles
- 40 nm channel height
- δ-doping

- Dry cap recess
- 5 Digital etch cycles
- 50 nm channel
- Fin-top passivation
- Remove δ -doping (in 2nd stage)

Process Technology: contact-first

Lin, IEDM 2013 Lu, EDL 2014 Vardi, EDL 2014

• Yield $R_c < 10 \Omega \cdot \mu m$

Dry+Digital Etch cap recess

- No metal pullback
- III-V cap pullback only during digital etch

(Lin, IEDM 2013)

Dry+Digital Etch fin definition

BCl₃/SiCl₄/Ar RIE + 5 DE cycles : smooth, vertical sidewalls and high aspect ratio (>10),

Device cross section

TEM of finished device in W_f direction

FIB cross section in L_g direction

- Fin pitch: 200 nm
- 10-200 fins/device
- W_f : 5-25 nm
- L_g : 30 nm 5 μm
- Contact to channel separation set by DE : ~5 nm

Electrical characteristics: $W_f=5 \text{ nm}, L_g=50 \text{ nm}$

Normalized by gate periphery

Well behaved devices with W_f=5 nm

On/Off performance: fin width scaling

15

To improve Off performance: remove δ-doping

- Dry gate recess allows to remove δ-doping
- Impact on the intrinsic fin transport

W_F=5 nm FinFET: Electrical characteristics: δ-doped vs. undoped

Normalized by gate periphery

Undoped fins:

- better OFF performance
- Undoped Similar ON performance

Electrical characteristics: δ-doped vs. undoped

- Undoped fin: improved electrostatics
- For W_f<20 nm undoped-fin ON performance also better

Electrical characteristics: V_T rolloff

Undoped fins smaller variation of V_T with $W_F \rightarrow$ Improved V_T rolloff

19

Benchmarking

normalized by gate periphery

- Systematic g_m degradation for $W_f < 15$ nm for both δ -doped and undoped structures
- No improvement from increased #DE cycles
- Higher EOT \rightarrow lower g_m w.r.t. to Gen. 1

Benchmarking

normalized by gate periphery

- Record W_f with good electrical performance
- Approaching Si FinFETs even at V_{DD} =0.5 V
- Record AR=10

Long-channel Mobility vs. W_f

Capacitance measured @ 1GHz

- Strong μ degradation as $W_f \downarrow$
- $W_f < 10 \text{ nm} \rightarrow \mu \text{ independent of } n_I$

Simulations – charge distribution

ON state: $n_1=3x10^7$ cm⁻¹

- Undoped fin: better use of sidewalls
- δ -doped fin: conduction close to lower facet of channel

Simulations – charge distribution

• Narrow fin: volume inversion in both δ -doped and undoped fins

Simulations – capacitance

Simulations – Mobility vs. Field

- Wide fin: E_s (δ-doped) < E_s (undoped)
- Narrow fin: E_s (δ -doped) ~ E_s (undoped)

26

Long-channel Mobility vs. W_f

• $W_f < 10 \text{ nm} \rightarrow \mu \text{ saturate}$

Conclusions

- Self-aligned gate-last InGaAs FinFET:
 - Self-aligned gate and contact trough precision RIE and digital etch
 - Record AR=10
- Record W_f = 5 nm InGaAs FinFET with good electrical performance
- Performance enhancement in narrow fins via δ -doping removal

Thank you !